

GYDCG-UBCS1 DC Insulation Monitor

User Manual

Version: 1.12

Revision: 2024.7

Email:tech@cqbluejay.com

Read me

When you use GYDCG-UBCS1, be sure to read this user manual carefully, and be able to fully understand the implications, the correct guidance of operations in accordance with user manual, which will help you make better use of GYDCG-UBCS1, and help to solve the various problems at the scene.

- 1. Before turning on the power supply, be sure that the power supply within the provisions of the instrument;
- 2. When installation, the current input terminal must non-open, voltage input terminals must Non-short circuit;
- 3. Communication terminal (RS485) is strictly prohibited to impose on high pressure;
- 4. Be sure the instrument wiring consistent with the internal system settings;
- 5. When communicating with the PC, instrument communication parameters must be consistent with the PC.

- Please read this user manual carefully
- Please save this document

Directory

1 SUMMARIZE	3 -
2 FUNCTION INTRODUCTION	5 -
2.1 INSULATION MONITORING WORKING PRINCIPLE	5 -
2.2 INSULATION MONITORING WORKING MODE	5 -
2.3 INSULATION MONITORING INTERNAL SELF-TEST FUNCTION	7 -
2.4 INSULATION RESISTANCE MONITORING FUNCTION	8 -
2.5 LED INDICATOR	10 -
2.6 COMMUNICATION PARAMETER CONFIGURATION BIT	10 -
3 TECHNICAL PARAMETERS	11 -
4 INSTALLATION AND STAR UP	13 -
4.1 Mounting	13 -
4.2 CONNECTION TERMINAL	14 -
5 COMMUNICATION INTERFACE	15 -
5.1 CONNECTION FOR RS485	15 -
5.2 COMMUNICATION PROTOCOL	15 -
5.3 Register Map	16 -
5.3.1 0x0014 Register bit definition	17 -
5.4 COMMAND SAMPLES	18 -
6 SAFETY CONSIDERATIONS	20 -
7 MAINTENANCE	20 -

1. - SUMMARIZE

GYDCG-UBCS1 is a DC insulation monitoring device based on MODBUS protocol, including DC to ground insulation impedance monitoring, DC voltage monitoring, DC voltage reverse connection alarm and other safety monitoring functions. It can be used for electric vehicle DC charging system, photovoltaic system, energy storage system, DC grid 100V~1000V. This product has the function of starting and stopping insulation monitoring. After insulation monitoring is started, the insulation resistance of positive and negative poles to ground can be monitored in real time. The monitoring result is not affected by DC voltage fluctuation, and is not affected by the symmetry of insulation resistance of positive and negative poles.

Insulation monitoring function introduction

The product can send communication frames through RS485 to turn on or off the insulation monitoring function. After the insulation monitoring function is turned on, the high-voltage grounding switch K is closed and the real-time measurement of insulation resistance is realized. After the insulation monitoring function is turned off, the high-voltage grounding switch K is disconnected. The host machine can send read command to read the insulation resistance value of positive and negative poles at any time.

The insulation resistance monitoring can be realized only when the DC voltage is between 100V and 1000V. If the insulation monitoring is off, or the DC voltage is less than 100V, or just opened for a short time, the value of Bit1 of 0x0014 is 0, then the read insulation resistance is 65535, namely 0xFFFF (invalid value). Only when the Bit1 value of 0x0014 is 1, the read insulation resistance is an effective value. The monitoring range of insulation resistance is between 1k Ω and 10M Ω . When the measured value is greater than 10M Ω , the received value is 60000, namely 0xEA60 (infinity value).

The user can turn the insulation monitoring on and off by writing the 0x0102 register, and can determine whether the current insulation monitoring is on or off by reading the Bit2 of the 0x0014 register. The opening and closing of insulation monitoring only determines whether the insulation resistance monitoring is enabled, and does not affect the DC voltage monitoring. After the product is powered, the DC voltage is continuously monitored.

After the insulation monitoring function is enabled, the product continuously monitors the insulation resistance in real time. The user can read the insulation resistance value at the earliest 1s after the function is enabled. For the presence of DC ground capacitance, the module can adaptively monitor the ground capacitance below 3uF (the positive and negative ground capacitance are respectively below 3uF, and the total capacitance is below 6uF). When the ground capacitance exists, the monitoring time is less than 2.5s.

FEATURES

- Widely power supply range;
- Widely insulation monitoring range (100V~1000VDC);
- insulation monitoring equipment self-test;
- Adaptive capacitance to ground;
- Convenient parameter setting;
- Remote monitoring and management;
- Monitor positive and negative poles;
- Ground insulation resistance;
- Voltage reverse polarity alarm.

APPLICATIONS

- Insulation resistance monitoring;
- DC voltage monitoring;
- Guarantee the safety and stability of charging;
- Improvement of the efficiency and charging quality;
- Personnel and equipment security.

2. - Function introduction

2.1. - Insulation monitoring working principle

The product can send communication frames through RS485 to turn on or off the insulation monitoring function. After the insulation monitoring function is turned on, the high-voltage grounding switch K is closed and the real-time measurement of insulation resistance is realized. After the insulation monitoring function is turned off, the high-voltage grounding switch K is disconnected. The host machine can send read command to read the insulation resistance value of positive and negative poles at any time.

2.2. - Insulation monitoring working mode

The insulation resistance monitoring can be realized only when the DC voltage is between 100V and 1000V.

By writing the 0x0100 register, you can select two working modes: Automatic switching bridge mode / Fixed bridge mode.

Automatic switching bridge mode means that the insulation monitor automatically switches the internal positive and negative poles to ground resistance.

As shown in Figure, [RP= $3M\Omega$, RN= $600K\Omega$] and [RP= $600K\Omega$, RN= $3M\Omega$] switch between each other. This mode monitors the insulation resistance to ground, and can read the 0x0012 and 0x0013 registers, that is, the insulation resistance values of the positive and negative poles to ground.

The positive and negative voltages to ground and negative to ground voltage are not monitored, and the 0x0015 and 0x0016 registers are invalid values (0xFFFF).

Fixed bridge mode means that the internal positive and negative pole-to-ground resistances (RP and RN) of the insulation monitor are fixed values. This mode monitors the positive and negative pole-to-ground voltages and can read the 0x0015 and 0x0016 registers, which are the positive and negative pole-to-ground voltage values., the insulation resistance of the positive and negative poles to ground is not monitored, and the 0x0012 and 0x0013 registers are invalid values

(0xFFFF). The fixed bridge mode can be realized by writing the 0x0100 register. The fixed bridge resistance is [RP=3M Ω , RN=3M Ω].

Working mode table

Write 0x0100	Working mode	Bridge resistor	Reading status
0x0004	Automatically switch to bridge mode	{R _P =3MΩ,R _N =600KΩ} and {R _P =600KΩ,R _N =3MΩ} switch between	Positive and negative pole-to-ground voltages VP and VN are both invalid values and display 0xFFFF. Insulation resistance to ground RfP and RfN are both valid values
0x0000	Fixed bridge mode	R⊧=3MΩ,Rℕ=3MΩ	Insulation resistance to ground RfP and RfN are both invalid values and display 0xFFFF. Positive and negative pole-to-ground voltages VP and VN are both valid values.

After the module is powered on, it defaults to automatically switching to bridge mode. After changing the working mode, turning the insulation monitoring on and off will not change the working mode status. Users can check the current working mode by querying bit8~bit10 of the 0x0014 register.

2.3. - Insulation monitoring internal self-test function

When the DC voltage is \geq 100V and the insulation monitoring module is turned off, the module will automatically self-test on its internal circuit (no control required) with a self-test period of 5 seconds.

When the sampled value of the monitored bridge voltage matches the bridge resistance value, it means that the self-test is passed.

By reading Bit4 of the 0x0014 register can judge the self-test whether is passed or not. passed self-test is "1"; not passed is "0". If the self-test results are not updated, the last result will remain unchanged.

Insulation monitoring function control sequence

- After the product is powered on, the 'PWR' light turns on and the DC voltage is continuously monitored.
- Insulation monitoring can be turned on and off by writing to the 0x0102 register.
- You can determine whether the current insulation monitoring is on or off by reading bit2 of the 0x0014 register.
- After sending the opening command to the module, the grounding switch K is closed and the 'LD1' light is on; after sending the closing command to the module, the grounding switch K is open and the 'LD1' light is on.
- The conditions for the effective DC-to-ground insulation resistance in Table 2 below must be met. The insulation resistance values of 0x0012 and 0x0013 are valid values. The resistance values of 0x0012 and 0x0013 can be read; if the resistance value is > 10MΩ, 0xEA60 is displayed, which is 60000; if The values of 0x0012 and 0x0013 are invalid values, that is, 0xFFFF is displayed, which is 65535.
- Users can read the insulation resistance value as soon as 0.7s~2s after turning on the insulation monitoring function. For the presence of DC capacitance to ground, the module can adaptively monitor ground capacitance below 3uF (the positive and negative capacitances to

ground are below 3uF respectively, and the total capacitance is below 6uF). When there is capacitance to ground, the monitoring time does not exceed 2s.

DC to ground resistance/voltage monitoring

Measured value	Valid/invalid	Conition	Readable
DC to ground insulation	Valid	 Need to meet both: 1. Send the instruction to turn on insulation monitoring to 0x0102; 2. 0.7s~2s after turning on the module; 3. DC voltage ≥100V; 4. Set to automatically switch to bridge mode; 	0x0012 is the positive to ground resistance RfP 0x0013 is the positive to ground resistance RfN Bit1 of 0x0014 is "1"
resistance value	Invalid	Meet any of the following: 1. Send the turn off insulation monitoring command to 0x0102; 2. Turn on the module within 0.7s~2s; 3. DC voltage <100V; 4. Set to fixed bridge mode;	0x0012 is 0xFFFF 0x0013 is 0xFFFF Bit1 of 0x0014 is "0"
DC to ground	Valid	Need to meet both: 1. Turn on fixed bridge mode to 0x0100; 2. Send the instruction to turn on insulation monitoring to 0x0102;	0x0015 is the positive to ground voltage VP 0x0016 is the negative ground voltage VN Bit8~bit10 of 0x0014 is "000"
voltage value	Invalid	 Meet any of the following: 1. Turn on automatic switching bridge mode to 0x0100; 2. Send the shutdown insulation monitoring command to 0x0102 	0x0015 is 0xFFFF 0x0016 is 0xFFFF Bit8~bit10 of 0x0014 is "100"

After the module is powered on, the $\ensuremath{\mathsf{PWR}}$ indicator is on.

'LD1' light logic		
Insulation monitoring function is ON, and the self-test function is OFF	'LD1 lights Normally ON	
Insulation monitoring function is ON,	'LD1' is ON for 1.5 seconds	
and the self-test function is ON	and OFF for 0.5 seconds	
Insulation monitoring function is OFF,	'LD1' is ON for 0.5 seconds	
self-test function is ON	and OFF for 1.5 seconds	
Insulation monitoring function is OFF, and the self-test function is OFF	'LD1 lights Normally OFF	

2.6. - Communication parameter configuration bit

				Add	lress			
	Ba	ud ra	nte	000	: 00I	Ŧ	Par	ity check
	1:	192)0bps	001	: 01I	H	00:	NONE
	0:	960	Obps	010	: 02H	Ŧ	01:	ODD
				011	: 03I	I	10:	EVEN
DIP switches used to configure				100	: 04I	H		
				101	: 05H	I		
Bit 1: set the baud rate;				110	: 06I	H		
Bits 2-4: set communication address;				111	: 07H	ł		
Bits 5-6: set parity check;								
" ON ": direction means set to "1".			ON					DP
			1	2	3	4	5	6

3. - TECHNICAL PARAMETERS

Basic parameters

Parameter	Value		
Power supply	10-30VDC, Power 3w		
DC voltage range		100V~1000V	
DC voltage measurement accuracy		≤2V+0.3%	
Insulation resistance measurement range	(DC	1KΩ~10MΩ System voltage:100V~	1000V)
	C _Y range	Resistance range	Accuracy
		≤60kΩ	≤3kΩ
Insulation monitoring accuracy ((When :DC voltage:100V-1000V)	0~0.8µF	60kΩ <r≤1mω< td=""><td>≤5%</td></r≤1mω<>	≤5%
((************************************	0.8µF ~3µF	≤60kΩ	≤6kΩ
		60kΩ <r≤1mω< td=""><td>≤20%</td></r≤1mω<>	≤20%
Insulation resistance value update time after turning on	After insulation monitoring is turned on, the time until the effective resistance 0.7s~2s value can be read for the first time		0.7s~2s
Insulation resistance value update time	Switch the insulation resistance until the module can read the switched 0.5s~3s		0.5s~3s
Insulation monitoring function switching times	50*10 ⁵ times		
Off-line pressure test	<2mA		
Standard	IEC 61851-23 (2014-03):2014-11		014-11
Humidity		85%	
Storage temperature	- 55°C ~90°C		
Operating temperature		- 40°C ~75°C	

Notes:

1. When facing the ground insulation resistance R_{ISO} + and negative insulation resistance to ground R_{ISO} -, The difference is too large, Multiplier of difference>5 times, R_{ISO} + and R_{ISO} - Large resistors may not be typical values.

2.C_Y Refers to the positive and negative Y capacitance values of the system bus to ground.

Other parameters

Pressure point	Maximum voltage rating	Time
DC+/DC- To GND	4200VDC/3000VAC	≤1min
Power supply +/- To GND	3500VDC/2500VAC	≤1min
RS485 A/B To GND	3500VDC/2500VAC	≤1min
DC+/DC- To Power supply +/-	4200VDC/3000VAC	≤1min
DC+/DC- TO A/B	4200VDC/3000VAC	≤1min

Note:

The power supply side (+/-), RS485(A/B), and Ground(G) should be isolated from each other

4. - INSTALLATION AND STAR UP

4.1. - Mounting

GYDCG-UBCS1 module can be installed by rail or screw. Guide rails use standard width of 35mm. Overall dimensions are shown in Figure 1 below: (Unit: mm)

4.2. - Terminal definition

Terminal	Connection mode	Definition	
D+	Positive pole of DC		
D-	Negative pole of DC	DC interface	
A	RS485-A	Communication	
В	RS485-B	Communication	
+	Positive pole of power supply		
-	Negative pole of power supply	10-30VDC	
G	System ground wire		
E	Earth or chassis		
NC	Backup		

5. - COMMUNICATION INTERFACE

5.1. - Connection for RS485

Users can send and receive data frames through the RS485 communication port. The circuit is equipped with 510Ω terminal resistance. For details, see 6 Communication Protocol. Terminals A and B correspond to RS485 outputs A and B respectively.

5.2. - Communication Protocol

GYDCG-UBCS1 use standard Modbus RTU protocol, using Modbus RTU **0x03/0x06** command; Baud rate, communication address, parity check mode, can be set by DIP switch, stop bit 1, data bit 8. The interval between each byte in the sent frame must not exceed 20ms; otherwise, the frame will be cleared. This module works in slave mode.

Modbus RTU Frame Format:

Address code	1 BYTE	Slave device address 1-247
Function code	1 BYTE	Indicates the function codes like read coils / inputs
Data code	4 BYTE	Starting address, high byte Starting address, low byte Length of registers, high byte Length of registers, low byte
Error Check code	2 BYTE	Cyclical redundancy check (CRC)

MODBUS FUNCTIONS:

Code	Meaning	Description
FUNCTION 03	Read hold register	This function permits to read all the electrical parameters
FUNCTION 06	Write single register	This function permits to write a value into a single holding register.

5.3. - Register Map

Function	Register	Data	Description
	0x0010	DC bus voltage	Unit 0.1V,16-bits 01 03 00 10 00 01 85 CF
	0×0012	Insulation resistance of	Unit KΩ, take an integer 01 03 00 12 00 01 24 0F
	0,0012	DC+ to Ground	(0xFFFF: invalid value; 0xEA60: resistance value greater than 10MΩ)
	0×0013	Insulation resistance of	Unit KΩ, take an integer 01 03 00 13 00 01 75 CF
0x03	0,0013	DC- to Ground	(0xFFFF: invalid value; 0xEA60: resistance value greater than 10MΩ)
	0x0014	Status bit	Refer to: chapter 5.3.1 01 03 00 14 00 01 C4 0E
	0x0015	Positive pole to ground voltage value	Unit 0.1V, take an integer 01 03 00 15 00 01 95 CE
	0x0016	Negative pole to ground voltage value	Unit 0.1V, take an integer 01 03 00 16 00 01 65 CE
	0x001A	Read version number	0x5202 01 03 00 1A 00 01 A5 CD
	0x0102 Insulation control	Insulation monitoring	Turn on insulation monitoring function 01 06 01 02 00 11 E9 FA
		control	Turn off insulation monitoring function 01 06 01 02 00 00 29 F6
0x06	0x0100 Fixed bridge	Automatically switch to bridge mode	Positive bridge resistance and negative bridge resistance switch each other 01 06 01 00 00 04 89 F5
		Fixed bridge mode	Positive bridge resistance is $3M\Omega$, negative bridge resistance is $3M\Omega$ 01 06 01 00 00 08 36
0XFF	0X66	Host reads the slave address	Example: Host inquiry: FF 66 A5 AA 2B Slave response: FF 66 01 AB 90 The slave address is 0x01

User manual

5.3.1.- 0x0014 Register bit definition

Bit	Definition		
bit15~bit11	Null	Null	
bit10:bit9:	Drocont working mode	000: Fixed bridge mode	
bit 8	Present working mode	100: Automatically switch to bridge mode (default)	
bit7	Bus voltage reverse	0: There is no reverse connection of DC voltage or the reverse connection voltage is less than 100V	
	connection alarm	1: DC reverse voltage is greater than 100V	
L:+ 4	Self-test result bit	1: Self-test passed	
DIL4		0: Self-test not passed or invalid	
hit?	Insulation monitoring	0: Insulation monitoring function turned off and the grounding switch K is disconnected.	
function turned on or off		1: Insulation monitoring function turned on and the grounding switch K is closed.	
bit1 Insulation resistance		0: Insulation resistance monitoring has not been completed, and the resistance value is an invalid value.	
		1: Insulation resistance monitoring is valid and the resistance value can be read	
bit0	Null	Null	

5.4. - Command samples

5.4.1 - Read Command (Function x 03)

Sample 1 Read the DC bus voltage and positive and negative insulation resistance to the ground(read 4 registers)

Host inquiry:

01 03 00 10 00 04 45 CC

Slave response:

01 03 08 07 D0 02 58 EA 60 02 58 11 4F

Means that:

Read the DC voltage 0X07D0 (200V), The positive insulation resistance 0XEA60 (infinite), The negative insulation resistance 0X0258 ($600K\Omega$).

Notes:

Only when the DC voltage is between 100V~1000V, Insulation resistance monitoring can be realized. If DC voltage is low than 100V, or it is turned on within a short time, the insulation resistance read is 0xFFFF (means invalid number).

If the read insulation resistance value is a valid number, the insulation resistance value monitoring range is between $1K\Omega \sim 10M\Omega$. When the measured value is greater than $10M\Omega$, the value received by the communication is 0xEA60 (means infinity).

Sample 2 Read IO status

Host inquiry:

01 03 00 14 00 01 C4 0E

Slave response:

01 03 02 00 94 B9 EB

Means that: 0x0094=0000 0000 1001 0100,

Bit10: Bit9: Bit8=000 represents fixed bridge mode, positive bridge resistance is $3M\Omega$, negative bridge resistance is $3M\Omega$, Bit7=1 represents hus voltage reverse connection

Bit7=1 represents bus voltage reverse connection,

- Bit2=1 insulation monitoring function is ON,
- Bit1=0 insulation resistance value is invalid,
- Bit4=1 self-test passed and set to "1".

5.4.2 -Write Command (Function x 06)

Sample 1	Turn on insulation monitoring:
	Host inquiry:
	01 06 01 02 00 11 E9 FA
	Slave response:
	01 06 01 02 00 11 E9 FA
Sample 2	Turn off insulation monitoring:
	Host inquiry:
	01 06 01 02 00 00 29 F6
	Slave response:

01 06 01 02 00 00 29 F6

6. - SAFETY CONSIDERATIONS

All installation specification described at the previous chapters named: INSTALLATION AND STARTUP, INSTALLATION MODES and SPECIFICATIONS.

Please note that with the instrument powered on, the terminals could be dangerous to touching and cover opening actions or elements removal may allow accessing dangerous parts. This instrument is factory-shipped at proper operation condition.

- The device must have a professional installation and maintenance
- ◆ Any operation of the device, you must cut off the input signal and power;

7. - MAINTENANCE

The GYDCG-UBCS1 does not require any special maintenance. No adjustment, maintenance or repairing action should be done when the instrument is open and powered on, should those actions are essential, high-qualified operators must perform them.

Before any adjustment, replacement, maintenance or repairing operation is carried out, the instrument must be disconnected from any power supply source.

When any protection failure is suspected to exist, the instrument must be immediately put out of service. The instrument's design allows a quick replacement in case of any failure.

For any inquiry about the instrument performance or any failure, contact to Blue Jay's technical service.

Blue Jay - After-sales service

E-mail: tech@cqbluejay.com