

DEM-6MC Din-Rail Multifunction Energy Meter

User Manual

Version: 1.11

Revision: 2025.09

Read me

When you use DEM-6MC Din-rail multi-function energy meter, be sure to read this user manual carefully, and be able to fully understand the implications, the correct guidance of operations in accordance with user manual, which will help you make better use of DEM-6MC Din-rail multi-function energy meter, and help to solve the various problems at the scene.

- Before the meter turns on the power supply, be sure that the power supply within the provisions
 of the instrument.
- When installation, the current input terminal must be non-open; voltage input terminals must be non-short circuit.
- Communication terminal (RS232/RS485) is strictly prohibited to impose on high pressure.
- 4. Be sure the instrument wiring consistent with the internal system settings.
- When communicating with the PC, instrument communication parameters must be consistent with the PC.
- During installation, it is strictly prohibited to connect or mix the N (neutral) line with any PE (protective earth) line.
- 7. It is strictly prohibited to connect or mix the neutral conductors of different branch circuits.

- Please read this user manual carefully
- Please save this document

Directory

1 SUMMARIZE	1
2 FEATURES	2
2.1 ELECTRICITY METERING	2
2.2 TECHNICAL PARAMETERS	3
3 INSTALLATION AND START-UP	5
3.1 INSTALLATION	5
3.2 CONNECTION TERMINAL	9
3.3 TYPICAL WIRING	10
4 OPERATION MODE	11
4.1 INDICATOR DESCRIPTION	12
5 SCREEN DISPLAY	13
5.1 OVERALL SCREEN:	13
5.2 INTRODUCTION OF SCREEN PAGES	14
6 SETUP PROCEDURE	18
6.1 ENTER SETUP MENU	18
6.2 INPUT SIGNAL SETUP	19
6.3 COMMUNICATION PORT SETUP	20
6.4 DIGITAL INPUT SETUP	21
6.5 DIGITAL OUTPUT SETUP	22
6.6 SYSTEM SETTING	26
6.7 SOE RECORD (READ ONLY)	27
6.8 RTC AND TOU SETUP	28
6.9 MAIN MENU CHARACTER DESCRIPTION	29
7 PULSE OUTPUT	30
8 COMMUNICATION INTERFACE	31
8.1 CONNECTION FOR THE RS485 BUS	31
8.2 MODBUS © PROTOCOL	31
8.3 REGISTER MAP	32
8.4 EXAMPLE	41
9 SAFETY CONSIDERATIONS	42
10 MAINTENANCE	42
11 TECHNICAL SERVICE	42

1.- SUMMARIZE

The DEM-6MC three-phase DIN-rail multifunction energy meter provides class 0.2 high-precision energy measurement and monitoring. It supports measurement and calculation of three-phase AC electrical parameters, cumulative energy recording, harmonic analysis, voltage and current unbalance analysis, multi-tariff energy metering, maximum demand measurement, digital inputs, alarm SOE record and relay outputs.

The meter is equipped with communication interfaces for integration with supervisory systems. It standard equipment RS485 interface with MODBUS protocol and 4G wireless communication with MQTT protocol, and optional other wireless modules (Wi-Fi, Zigbee, LoRa, IoT, etc.), enabling transmission of acquired measurement data and device status for centralized remote monitoring and management.

It can measure all the power parameters in power grid:

Current, Apparent power, Current harmonics 2~63 times, Voltage, Energy (Active/Reactive), Voltage harmonics 2~63 times, Frequency, Power factor, Voltage and current THD%, Active power, Voltage /current unbalance, Max demand record, Reactive power, Multi-tariff record (TOU), 60 lists SOE record,

FEATURES

- All electrical parameters real-time measurement;
- 0.2% high-accuracy energy metering;
- Standard RS485 interfaces with MODBUS protocol;
- Standard 4G wireless communication with MQTT protocol;
- Optional multiple wireless modules (Wi-Fi, Zigbee, LoRa, IoT, etc.)
- Max 60 lists SOE record, no loss in power failure;
- Supports 4 digital inputs and 2 digital outputs;

APPLICATIONS

- Industrial manufacturing plants and factories;
- Commercial high-rise and large-scale buildings
- Transformers, generators, capacitors and electric motors;
- Medium and low voltage distribution networks;
- Data centers and IT infrastructure facilities
- SCADA, EMS, DCS integrators.

2.- FEATURES

2.1.- Electricity Metering

By means of an internal microprocessor it simultaneously measures:

Parameter	Symbol	A-phase	B-phase	C-phase	Total
Phase-line voltage	V	•	•	•	1
*Phase-phase voltage	V	•	•	•	1
Current	Α	•	•	•	1
Frequency	Hz	1	1	1	•
Power factor	Cos Φ	•	•	•	•
Active power	W	•	•	•	•
Reactive power	Var	•	•	•	•
Active energy	Wh	•	•	•	•
Reactive energy	Varh	•	•	•	•
Multi- tariffs energy record	Wh	1	1	1	•
Max demand (W / var / VA)	MAX	1	1	1	•
Voltage / current unbalance	%	1	1	1	•
THD & Harmonic (2~63 rd)		•	•	•	•

^{•:} Display and communications

o: Optional functions

I: No such function

2.2.- Technical parameters

Working power

Power grid mode 1P2W, 3P3W, 3P4W

Power supply 85-265VAC/DC, 45-65Hz

Consumption ≤5VA

Data refresh frequency 1S

Voltage input

Rated value 100V/220V/380V

Overload 1.2Un

Power consumption <0.2VA

Impedance $0.5M\Omega$

Current input

Rated value AC 100mA, 1A, 5A (please specify when ordering)

Overload Measurement: 1.2 times Instantaneous: 10 times/3s

Power consumption <0.1VA

Impedance $<20M\Omega$

Accuracy

Voltage, current 0.2%

Power 0.2%

Harmonics Uh>2%: 5%Uh; Uh<=2%: 0.1%Un

Residual current 1%

Temperature ±2°C

Frequency ±0.02Hz

Active energy Class 0.5S

Reactive energy Class 1.0

I/O capacity

DI 4 channels, dry contact, Ri<500Ω turns on, Ri>100kΩ turns off

2 channels, Relay contact capacity: 5A@250VAC; 5A@30VDC,

isolation voltage: 2500VAC

Pulse output 1 channel, pulse width 80ms, photoelectric isolation

Communication

RS485 interface Modbus-RTU, baud rate 1200-19200bps

MQTT protocol, JSON format, default full electrical parameters, 4G wireless module

push interval: 15 minutes

Optional Wireless modules WIFI, Zigbee, LoRa, IoT, etc.

Safety

DO

Pollution degree 2

Overvoltage category CAT III@277/480VAC

2kV AC RMS 1 minute, between input / output / case / power Insulation capability

IEC61000-4-4 level 3 @Input 1kV; Power supply 2kV

IEC61000-4-5 level 4 @Common mode: 4kV

supply

EMC test

Discharge immunity test IEC-61000-4-2 level 4 @8kV

transient burst

immunity test

Surge (Shock) immunity

test

Environment

Working temperature -10°C ~ +55°C; RH 5% ~ 95% (non-condensation)

Storage temperature -40°C ~ +85°C; RH 5% ~ 95% (non-condensation)

Others

Demand record Maximum monthly demand in the past three months

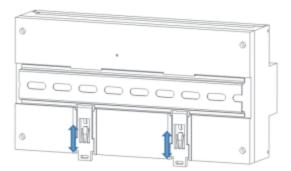
Multi-tariffs ratio 4 sets rates, 12 segments

60 lists, (30 lists DI/DO SOE and 30 lists Alarm SOE) SOE record

Dimension 110mm×108mmx66mm (W*H*D), 35mm Din-rail mounting

3.- INSTALLATION AND START-UP

The manual you hold contains information and warnings that -users should follow in order to guarantee proper operation of all the instrument functions and keep it in safety conditions. The instrument must not be powered on and used until its definitive assembly is on the cabinet's door.

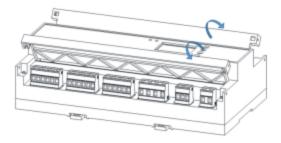

If the instrument is not used as manufacturer's specifications, the protection of the instrument will be damaged.

When any protection failure is suspected to exist (for example, it presents external visible damages), the instrument must be immediately powered off. In this case contact a qualified service representative.

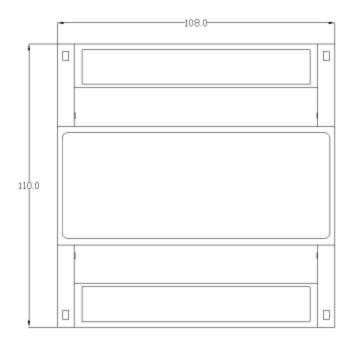
3.1.- Installation

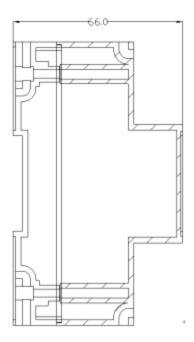
Mounting: DEM-6MC is to be mounted on 35mm Din-rail.

- Step-1 Fasten a section of the 35 mm DIN rail (at least 8 inches long) to the mounting surface with appropriate hardware.
- Step-2 Use the white plastic clips on the back of the DEM-6MC meter to clip the meter onto the rail.
- Step-3 Verify that the meter is securely fastened to the wall.



There are two flaps covers, can be sealed by lead wire to protect unauthorized access terminal block, to achieve physical anti-theft function. Also capable of completely shielding the terminal head to prevent accident electrical shock.


Warning that with the instrument powered on, the terminals could be dangerous to touch and cover opening actions or elements removal may allow accessing dangerous parts.


Therefore, the instrument must not be used or operation key button until this is completely installed and close the cover.

Dimension: 108*110*66mm (W*H*D)

Notes:

Input signal: DEM-6MC using a separate acquisition calculate for each measurement channel, to ensure consistent in use, for different load forms, it's a variety of connection mode. Access wire shall be met 2.5 square mm.

A. Voltage input

Input voltage should not exceed the rated input voltage products 450V.

Otherwise, you should use external VT. Suggest 1A fuse be installed in the voltage input side.

B. Current Input

Standard input current is 5A or 1A, if greater than 5A/1A should use external CT.

When the CT is connected with other meters, make sure wiring methods be used in series.

Warning: Forbid to install a CT on the live feeder wire with open secondary leads. This can be extremely dangerous!

Before remove the current input connection, must be sure to disconnect the primary circuit or shorted secondary circuit of CT.

C. Sequence of wire

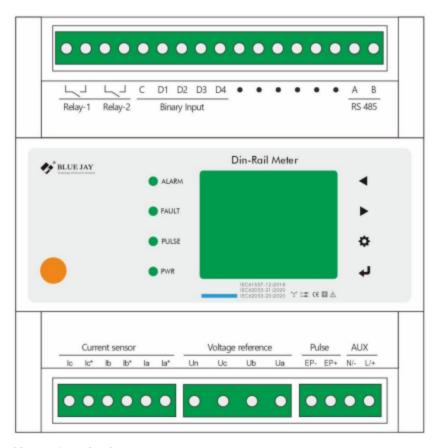
Warning: Please make sure that the input voltage and current corresponding to the same phase, sequence, and the same direction; Otherwise, the Values and symbols will be wrong! (Power and Energy).

Always observe the physical orientation of CT (P1 - P2) when installing on the feeder wire. Always pay attention to wiring polarity and phasing when terminating the CT leads to the DEM-6MC. S1 connect to Ix*, S2 connect to Ix.

The input network configuration of instrument depends on the CT number of the system: in the condition of 2 CT, select the three-phase, three-lines two components; in the condition of 3 CT, select the three-phase, four-lines three component mode.

Instrument connection mode, set of the instrument (programming input network NET) should be the same load wiring as measured wiring. Otherwise, the measurement instrument will lead to incorrect voltage or power.

In three-phase 3 wire mode, measurement and shows the line voltage; In three-phase 4 wire mode, measurement and shows the phase voltage and line voltage both.


D. Auxiliary power

DEM-6MC with universal (AC / DC) power input, if not for a special statement, we provide the 90-240AC/DC power interface for standard products, please ensure that the auxiliary power can match with meter to prevent unexpected damage.

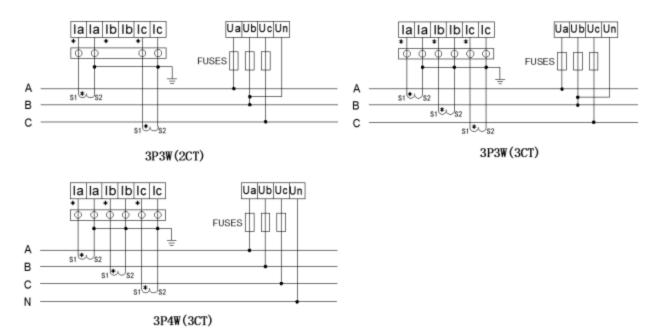
- A. Suggest install 1A fuse in the fire line side.
- B. For the areas with poor power quality, suggest installing lightning surge suppressor and rapid burst suppressor to prevent lightning strikes.

3.2.- Connection Terminal

Upper terminal:

Marked	Notes	
Relay 1-2	2 channels digital output	
C, D1-4 Common terminal, 4 channels digital input		
A, B	RS485 communication +/-	

Lower terminal:


Marked	Notes	
la*, la - lc*, lc	A B C phase current sensor input +/-	
Ua, Ub, Uc, Un A B C phase voltage input Neutral Voltage input		
EP+, Ep-	Active energy pulse output+/-	
L, N	AUX input 85-265Vac/dc+/-	

Note:

The terminal pin definition may change depending on customer order; please refer to the label on the meter!

3.3.- Typical Wiring

Note:

- The current direction is defined as flowing from terminal Ia* (positive pole) to Ia (negative pole).
- This connection drawing is for reference only; the actual connecting terminal please refer to the label on the rear part.

WARNINGS!

If power = -0.01 is shown for any of the phases and voltage and current are not zero for this phase, check out following points:

- Assure that A, B and C phases coincide in voltage and current.
- Correct polarity? Reverse the current transformer placed at this phase.

4.- OPERATION MODE

When the device is powered on, the system runs a self-test with all LEDs. If detected errors will display in screen.

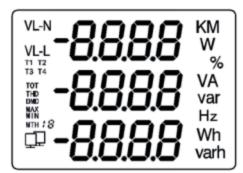
Button	In Monitor Screen	In Config Sub-menu	In Parameter Setup
•	Screen will move to	Move cursor up and	Move setting cursor to left
•	previous or next page	down to select function	Scroll selection number 0 ~ 9
•	Call out password screen	Exit & roll back to up level menu. Confirm the values & Entry or jump to down level menu	
4	Call out sub-screen or version screen		


Note: In Config. menu, if change the setting value, press for exit menu, device will call out confirm screen ask "SAVE"

- 11 -

4.1.- Indicator Description

Indicator	Description
ALARM	Alarm occurs (parameter threshold exceeded, DI tripped etc.)
FAULT	Fault occurs (Device itself or the sensor is abnormal (such as hardware damage, wiring error, short circuit, disconnection, etc.)
PULSE	Energy pulse output indicator (Reserved function)
PWR	Power indicator for showing the meter is powered on and operating normally.


Note:

Alarm and fault events will be recorded, and the specific cause can be queried through the [Configuration menu- "SoE"/ "SoEA" (Details see <a href="https://chapter.com/chapte

5.- SCREEN DISPLAY

5.1.- Overall screen:

VL-N: Phase to phase voltage

VL-L: Phase to line voltage

T1-T4: TOU mode1-4 of Multi tariff record function

TOT: Total value of parameter

THD: Total harmonic distortion

DMD: Maximum demand value

MAX/ MIN: Maximum/ Minimum Value

MTH: Month

Note:

Screen shows all the functions for reference only. If there is no relevant function, you can ignore it.

5.2.- Introduction of screen pages

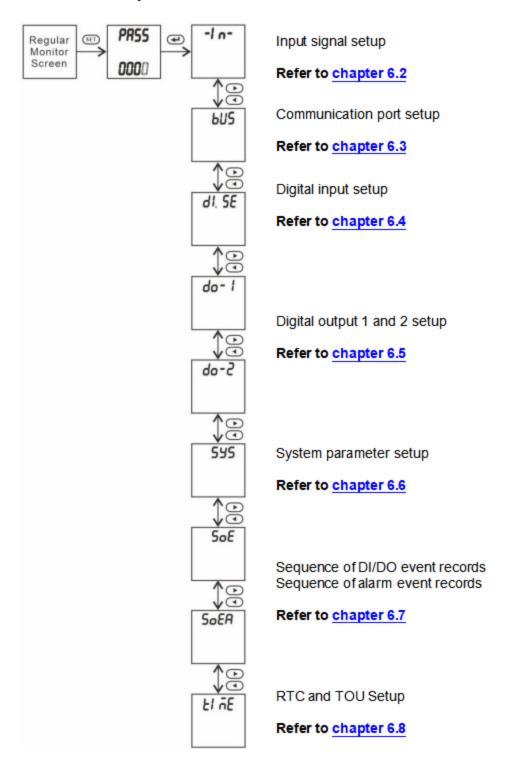
Page	Screen interface	Explanation
	VLN 380.1	Phase to phase voltage Ua, Ub, Uc
-1-	* 3800 ° • 3799	Ua=380.1V Ub=380.0V Uc=379.9V T4 indicates the billing rate. Press " key to switch to line voltage.
-2-	5.000 4998 ^ 5.00 I	Three-phase current la, lb, lc Ia=5.000A Ib=4.998A Ic=5.001A
-3-	3671 w 1252 w 0.946	Total active power, Total reactive power, and Total power factors
-4-	- 00 I I	4G communication OPEN means the network is not connected STAR means the 4G module is initialized 0001 means the execution step. If the network is successfully connected, execute step 0011 and COOK will be displayed.

- 5 -	F * 50.00 _™ □ H2	Frequency of grid F=50.00Hz
-6-	° 2000 ° 1389 ™	Positive active energy Ep=1.389 kWh Note: 1 Wh = 0.001 kWh Press " key to negative active energy
-7-	E9 K * 0000 * 0.263 varh	Positive reactive energy Eq=0.263 kvarh Press "
-8-	EO£0 ^к □ 1389 w	Multi-tariff energy record (TOU) "E0" ~ "E3" E0: Last three months total TOU record E1: Present month TOU record E2: Last month TOU record E3: Month before last month TOU record "T1" ~ "T4" for 4 types tariff energy sum record. Press " key to switch
-9-	966.3 w _* 342.9 w = 987.7	Maximum demand power Row 1: Active power Row 2: Reactive power Row 3: Apparent power "DMD 1-3" DMD1: Max. demand record of present month DMD2: Max. demand record of last month DMD3: Max. demand record of month before last month Press " key to switch

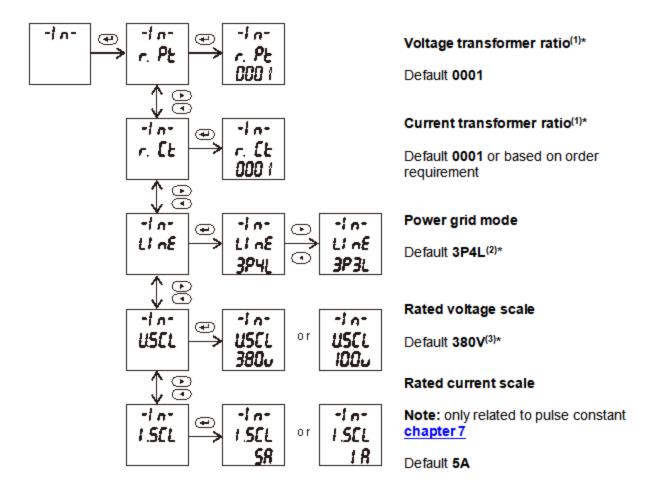
	Technology of Electrical Automatic	
	5054	Real-time clock (RTC)
- 10 -	יי א מה ה א מה	Row 1: Year Row 2: Month Row 3: Date
	}	Press " key to shows: Hour, Minute and Second
- 11 -	00 !4 * 00 !2 • 00 !6	Three phase voltage total harmonic distortion (THD_U%)
- 12 -	00 18 * * 00 13 * 00 16	Three phase current total harmonic distortion (THD_I%)
- 13 -	A-02 - 00 t 1 □ 00 t3	A phase harmonic components Row 2: Voltage harmonics Row 3: Current harmonics
- 14 -	b-02 ™ 00 t3 ™ 00 t5	B phase harmonic components Row 2: Voltage harmonics Row 3: Current harmonics
- 15 -	C - 02 ™ 00 !4 □ 00 !5	C phase harmonic components Row 2: Voltage harmonics Row 3: Current harmonics

- 19 -	dl do 0000 0000	DI/DO Status Row 2: shows DI status Row 3: shows DO status "0": open, "1": closed.
- 20 -	RL-ñ 1 1 □ 0.534	Alarm prompt It means leakage alarm on channel 1, Alarm value is 0.634A

Note:

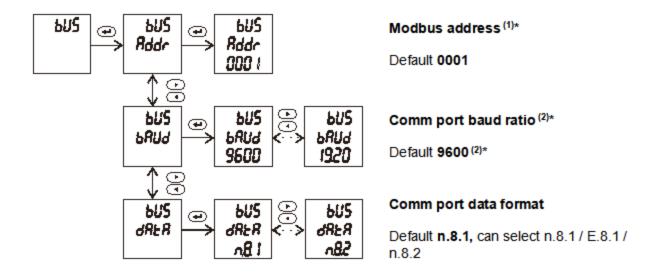

In special requirement order or firmware iteration, the screen may add or reduce the screen display pages, please ask the sales team to get the latest manual.

6.- SETUP PROCEDURE


The SETUP procedure of the DEM-6MC is performed by means of several SETUP options. There has a password to protect unexpectedly enter the Setup menu. Once into the Setup menu, use keyboard to select different options and enter required variables:

6.1.- Enter Setup Menu

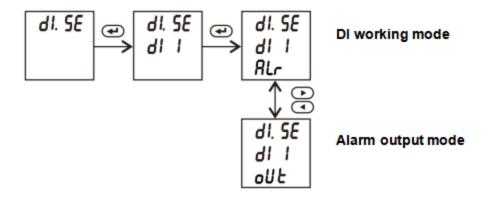
6.2.- Input Signal Setup


Notes:

- (1) In medium or high voltage system, set this value can expand measuring range, values represent the current transformer (primary side voltage) / (secondary side current). Must set U.scI in 100V or other specified VT secondary voltage.
- (2) If the order specified power grid is 3P3L, Blue Jay will connect Un and Ub terminal internally. In screen only show phase to phase parameter.
- (3) Blue Jay calibrate meter under 380V range, high-quality linearity performance ensures that the meter can accurately measure in the lower voltage range. That can compatible with 120V, 220V, 230V, 240V, 277V system.

If need to use in different voltage scale or different types CT, please contact our sales team for more help.

6.3.- Communication Port Setup



Note:

- (1) Modbus address setup range 1-247.
- (2) Baud ratio can select 1200 / 2400 / 4800/ 9600 / 19200, regular meter equipped communication port max baud ratio are 19200bps, if need higher speed, please contact Blue Jay sales team.

6.4.- Digital Input Setup

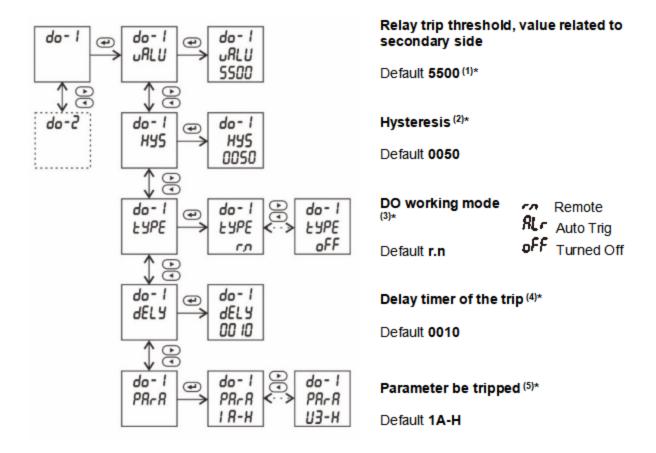
-. DI working mode: OFF/ Alarm

"OFF", means only monitoring without alarm protection action.

"ALARM" means that when the DI terminal be closed and reach the preset delay time, it will automatically display alarm screen. After the alarm occurs, manual reset is required after the fault is cleared.

-. Alarm output mode: DO1/ DO2/ OFF

Selects the output channel as DO1 or DO2 or disables the output (OFF).


DI 2 setup is the same as DI 1

6.5.- Digital Output Setup

When the device has more than one DO port, you can set the DO-2, as same step.

The physical DO relay standard is 5A@250VAC / 5A@30VDC

Notes:

(1) Relay trip threshold value have different units:

Voltage - 0.1V Active power - 0.1W Power factor - 0.001

Current - 0.001A Reactive power - 0.1VAR Frequency- 0.01HZ

(2) Hysteresis value is for prevent unexpected relay release, only the measurement parameter falls back lower / over a certain difference value from trip threshold, the DO can be released.

Formula: Xm < X - Xr (Upper edge trig) or Xm > X + Xr (Lower edge trig)

Xm is measurement rms value of electrical parameter

Example: Trig threshold value 3.700A; hysteresis value 0.03; After relay trigged, when measured value **Xm** < 3.589A (3.700-3.700*0.03), the relay will be released.

(3) DO port preset 2 types of working mode, and can be Turned Off

Auto Trig – When the measurement parameter over or lower the preset UPLU the DO relay act, terminal of DO+ / DO- shorted. After the measurement parameter fall back to a certain value can be released relay coil.

Remote - DO relay act by RS-485 control command, user can use function code 05 to trig single relay, device RS-485 port follow MODBUS-RTU protocol, command as following:

Host inquiry:

Addr.	Code	No.1 Relay register	Relay value (FF00:close; 0000: open)	CRC
01	05	00 01	FF 00	DD FA

Slave response:

Addr.	Code	No.1 Relay register	Relay value (FF00:close; 0000: open)	CRC
01	05	00 01	FF 00	DD FA

(4) In Auto trig mode, after Xm > URU in the specified delay time, DO relay act. Setting value from 0.000sec (no delay) to 999.9 sec, default 0010 = 1sec.

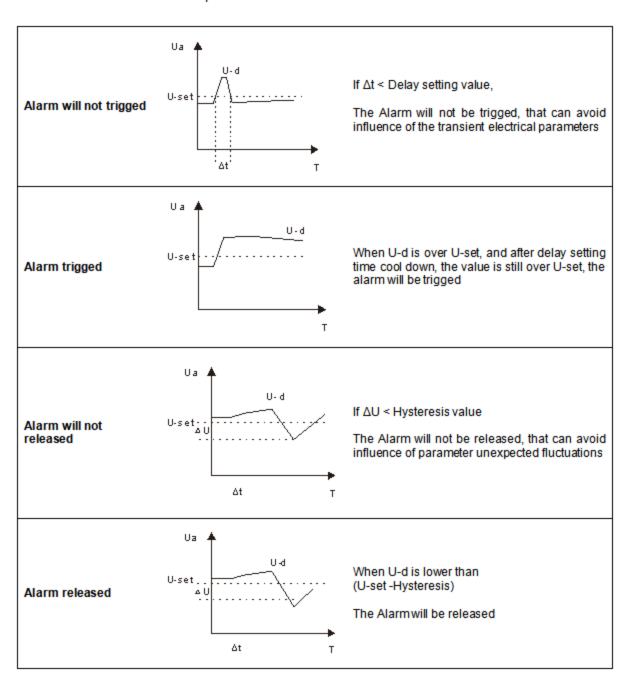
In Remote mode, if setup value = 0, output is Level type,

If set value = 0, output is **Pulse type**, value = pulse width

(5) Parameter of the DO can be set, preset 52 types parameter that can be used in auto trig mode.

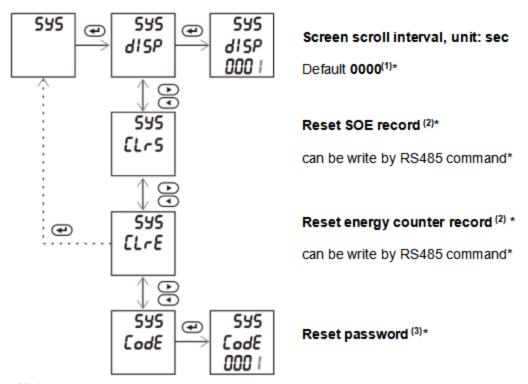
UC-H U3-H 18-H	C phase voltage upper trig Any one of Ua / Ub / Uc3 upper trig A phase current upper trig	95-H 5A-H 56-X	B phase reactive power upper trig C phase reactive power upper trig Total reactive power upper trig A phase apparent power upper trig B phase apparent power upper trig
1 (-H	B phase current upper trig C phase current upper trig Any one of Ia / Ib / Ic3 upper trig	מיכנ	C phase apparent power upper trig Total apparent power upper trig Total power factor upper trig
РБ-Н РС-Н РS-Н	A phase active power upper trig B phase active power upper trig C phase active power upper trig Total active power upper trig	81 3H 81 3H 81 3H	Frequency upper trig DI1 closed trig DI2 closed trig DI3 closed trig
מ-ער	A phase reactive power upper trig	क्ष यम	DI4 closed trig

Note: If in screen show "XX -1" mean lower limit trig, for DI port mean open loop trig.



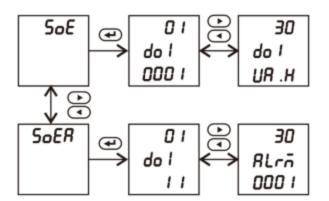
* Delay & Hysteresis logic

Example in upper limit alarm of A phase voltage:


U-d mean detected Ua

U-set mean Alarm value of A phase

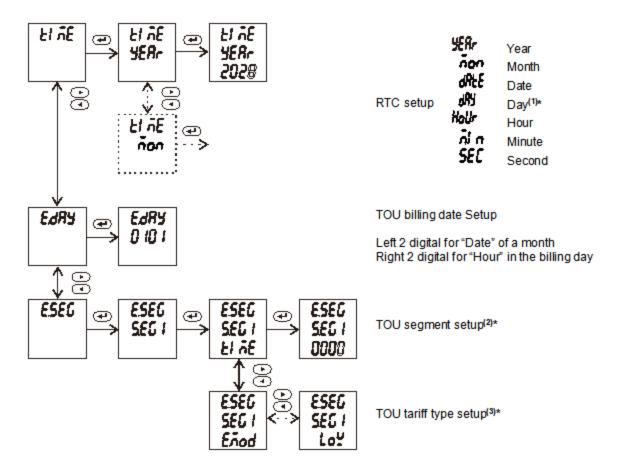
6.6.- System Setting



Notes:

- (1) Set 0000 mean manually switch each monitor screen pages.
- (2) Press device will roll back to SYS root menu, only in the exit screen press to trigger clear operation!
- (3) If reset the password, please keep the password in safety, or only return to Blue Jay for reset new password!
- (4) Variable step value is 2/1000. Blue Jay already do calibration before shipping, please use high precision ammeter or voltmeter as reference standard.
- (5) Customers can write commands through RS485 or through the screen to clear the energy data to 0. Once the secondary side value of the internal memory reaches to 2³²(4294,967,296), counter automatically reset to 0.

6.7.- SOE record (Read only)



Sequence of DI/DO event records, max 30 lists

Sequence of alarm event records, max 30 lists

6.8.- RTC and TOU Setup

Notes:

- (1) The weekday is independent data, only loops from 1-7, and does not linked to date information, only can be read in register map and used as data identity.
- (2) DEM-6MC provides last 3 months of TOU energy record. The TOU function separate one day in to 12 segments billing interval. **If for record starting time point in one day.
- (3) Device used 4 different words to indicate 4 types tariff (T1-T4) energy consumption in different time segment and record in memory. correspondence is as follows:

Tine	ti në	T1
Peak	<i></i> ዖይጸሂ	T2
Flat	FLAL	Т3
Valley	Lou	T4

6.9.- Main menu character description

Char.	Explanation	Char.	Explanation
υRL	(Value) Alarm value setting	oUŁ	Digital output setting
ALr	(Alarm) Alarm mode	oPEn	Open circuit fault
di i	Channel 1 Digital input setting	41 Z	Channel 1 Digital input setting
do l	Channel 1 Digital output setting	ñodE	Mode selection
PRcR	Parameter selection	905	Channel 2 Digital output setting
ריט	Remote control alarm	daSE	First-level menu relay output
[LrE	Clear electric energy	552	System settings menu
CodE	Enter password	[Lr5	Clear SOE
SRuE	Save settings prompt	di SP	Cycle display time (seconds) 0 means no cycle display
Rddr	(Address) Local communication address setting	SoE	Sequence of event record
dRER	(Data) Communication parameter setting	PRUS	(Baud) Communication baud rate
o.8. t	(o.8.1) Indicates 8 data bits, 1 stop bit, odd parity	n.B. I	(n.8.1) Indicates 8 data bits, 1 stop bit, no parity bit
d£L7	Protection action delay time	E.B. 1	(e.8.1) Indicates 8 data bits, 1 stop bit, even parity

7.- PULSE OUTPUT

DEM-6MC provides 1 channel pulse output for total active energy

The host / PLC / DI module can cumulative the data of both the active and reactive power energy sent by the pulse from opt coupler relay.

Electrical specification: voltage VCC ≤ 48V, Iz ≤ 50mA.

2). Pulse: 5000 imp / kWh, pulse up to 80ms.

This means: When the device detects 1 kWh, the port will generate 5000 pulses.

Note: 1 kWh energy is for <u>secondary side energy data</u>, if there have PT and CT accessed; primary side energy data is "1 kWh ×PT ratio".

Voltage (V)	Current (A)	Pulse constant (imp / kWh)
200 or 220	5	5000
380 or 220	1	20000
100	5	20000
100	1	80000

Example: In measure time "T", the received total pulse is "N",

Primary side input of voltage is 10Kv. Primary side input of current is 400A.

Secondary side measurement range is 100V and 5A.

In the time "T", energy accumulated is: N / 20000 × 100 × 80

8.- COMMUNICATION INTERFACE

8.1.- Connection for the RS485 BUS

The composition of the RS-485 cabling must be carried out with a meshed screen cable (minimum 3 wire), diameter of not less than 0.5mm², with a maximum distance of 1,200 m between the DEM-6MC... and the master unit. This Bus may connect to a maximum of 32pcs DEM-6MC...

8.2.- MODBUS © Protocol

Modbus RTU Frame Format:

Address code	1 BYTE	Slave device address 1-247
Function code	1 BYTE	Indicates the function codes like read coils / inputs
Data code	4 BYTES	Starting address, high byte Starting address, low byte Number of registers, high byte Number of registers, low byte
Error Check code	2 BYTES	Cyclical Redundancy Check (CRC)

MODBUS FUNCTIONS:

Code	Meaning	Description
FUNCTION 01	Read Coils	Reads the ON/OFF status of discrete coils in the slave.
FUNCTION 02	Read Discrete Inputs	Reads the ON/OFF status of discrete inputs in the slave.
FUNCTION 03	Read Holding Registers	Read the binary contents of holding registers in the slave.
FUNCTION 04	Read Input Registers	Read the binary contents of input registers in the slave.
FUNCTION 05	Write Single Coil	Write a single coil to either ON or OFF.
FUNCTION 06	Write Single Register	Writes a value into a single holding register.

Note: Float data follow IEEE754, float low bit first, high bit next. (CD AB).

8.3.- Register map

8.3.1.- Basic power data- primary side- read only

Register	Data	Byte m	ode	Instruction
0x00	Ua	float	2	
0x02	Ub	float	2	Phase to Line Voltage, Unit: V
0x04	Uc	float	2	
0x06	Uab	float	2	
80x0	Ubc	float	2	Phase to Phase Voltage, Unit: V
0x0a	Uca	float	2	
0x0c	la	float	2	
0x0e	lb	float	2	Three phase Current, Unit: A
0x10	Ic	float	2	
0x12	Pa	float	2	
0x14	Pb	float	2	Individual phase active power, Unit: kW
0x16	Pc	float	2	
0x18	PΣ	float	2	Total active power, Unit: kW
0x1a	Qa	float	2	
0x1c	Qb	float	2	Individual phase reactive power, Unit: kVar
0x1e	Qc	float	2	
0x20	QΣ	float	2	Total reactive power, Unit: kVar
0x22	Sa	float	2	
0x24	Sb	float	2	Individual phase apparent power, Unit: kVA
0x26	Sc	float	2	
0x28	SΣ	float	2	Total apparent power, Unit: kVA
0x2a	PFa	float	2	
0x2c	PFb	float	2	Individual phase power factor, 0~1.000
0x2e	PFc	float	2	
0x30	PF∑	float	2	Total power factor, 0~1.000
0x32	FR	float	2	Frequency, Unit:0.01Hz
0x34	Ep+	float	2	Positive active energy, Unit: kWh
0x36	Ep-	float	2	Negative active energy, Unit: kWh
0x38	Eq+	float	2	Inductive reactive power, Unit: kVarh
0x3a	Eq-	float	2	Capacitive reactive power

8.3.2.- Basic power data-secondary side- read only

Register	Data	Byte	mode	Instruction
0x100	Ua	int	1	
0x101	Ub	int	1	Phase to Line Voltage, Unit: 0.1V
0x102	Uc	int	1	
0x103	Uab	int	1	
0x104	Ubc	int	1	Phase to Phase Voltage, Unit: 0.1V
0x105	Uca	int	1	
0x106	la	int	1	
0x107	Ib	int	1	Three phase Current, Unit: 0.001A
0x108	Ic	int	1	
0x109	Pa	int	1	
0x10a	Pb	int	1	Individual phase active power, Unit: W
0x10b	Pc	int	1	
0x10c	PΣ	int	1	Total active power, Unit: W
0x10d	Qa	int	1	
0x10e	Qb	int	1	Individual phase reactive power, Unit: Var
0x10f	Qc	int	1	
0x110	ďΣ	int	1	Total reactive power, Unit: Var
0x111	Sa	int	1	
0x112	Sb	int	1	Individual phase apparent power, Unit: kVA
0x113	Sc	int	1	
0x114	SΣ	int	1	Total apparent power, Unit: VA
0x115	PFa	int	1	
0x116	PFb	int	1	Individual phase power factor, 0~1.000
0x117	PFc	int	1	
0x118	PF∑	int	1	Total power factor, 0~1.000
0x119	FR	int	1	Frequency, Unit:0.01Hz
0x11a	Ep+	int	2	Positive active energy, Unit: Wh
0x11c	Ep-	int	2	Negative active energy, Unit: Wh
0x11e	Eq+	int	2	Inductive reactive power, Unit: Varh
0x120	Eq-	int	2	Capacitive reactive power

8.3.3.- Meter status data- read only

Register	Data	Byte mode		Instruction
0x200	DO	int	1	Digital output: Bit 0~1 show channel 1and channel 2 status 0 for open, 1 for closed
0x201	DI	int	1	Digital input: Bit 0~3 show channel 1 to channel 4 status 0 for open, 1 for closed
0x202	1	/	/	Reserved
0x203	PHAS	int	1	Voltage phase sequence status 0: normal, 1: abnormal

Read and write

Register	Data	Byte mode		Instruction
0x20A	RTC. year	int	1	
0x20B	RTC. month	int	1	
0x20C	RTC. date	int	1	l
0x20D	RTC. hour	int	1	Internal RTC real time clock: Year - Month - Date - Hour - Minutes - Second - Week
0x20E	RTC. minute	int	1	Date From Minates Cooking Week
0x20F	RTC. second	int	1	
0x210	RTC. week	int	1	

8.3.4.- Advanced electrical parameter - primary side- read only

Register	Data	Byte	mode	Instruction
0x300	Pde	float	2	Present active power demand, Unit: W
0x302	Qde	float	2	Present reactive power demand, Unit: var
0x304	Sde	float	2	Present apparent power demand, Unit: VA
0x306	Pd_M0	float	2	Maximum active power demand in present month
0x308	Qd_M0	float	2	Maximum reactive power demand in present month
0x30a	Sd_M0	float	2	Maximum apparent power demand in present month
0x30c	Pd_M1	float	2	Maximum active power demand in last month
0x30e	Qd_M1	float	2	Maximum reactive power demand in last month
0x310	Sd_M1	float	2	Maximum apparent power demand in last month
0x312	Pd_M2	float	2	Maximum active power demand in month before last month
0x314	Qd_M2	float	2	Maximum reactive power demand in month before last month
0x316	Sd_M2	float	2	Maximum apparent power demand in month before last month
0x318-0x 31F	1	float	2	Reserved
0x320	V _ō +	float	2	Positive sequence voltage in primary side
0x322	V _δ -	float	2	Negative sequence voltage in primary side
0x324	V ₀	float	2	Zero sequence voltage in primary side
0x326	l _ō +	float	2	Positive sequence current in primary side
0x328	lō-	float	2	Negative sequence current in primary side
0x32A	lo	float	2	Zero sequence current in primary side
0x32C	eU	float	2	Negative sequence voltage %
0x32E	el	float	2	Negative sequence current %
0x330	Va_d	float	2	A phase voltage deviation
0x332	Vb_d	float	2	B phase voltage deviation
0x334	Vc_d	float	2	C phase voltage deviation
0x336	F_d	float	2	Frequency deviation
0x340	year	int	1	
0x341	month	int	1	
0x342	date	int	1	Timestamp of maximum demand in present month (Year- Month- Date- Hour- Minute)
0x343	hour	int	1	
0x344	minute	int	1	
0x345-0x 349	1	int	1	Timestamp of maximum demand in last month
0x34A-0x 34E	1	int	1	Timestamp of maximum demand in month before last month

8.3.5.- Multi-tariffs ratio data - secondary side- read only

Register	Data	Byte mode		Instruction
0x400	E0_tol	long	2	Total cumulative energy
0x402	E0_T1	long	2	
0x404	E0_T2	long	2	T1-T4 cumulative Energy record
0x406	E0_T3	long	2	11-14 Cullidative Ellergy record
0x408	E0_T4	long	2	
0x40a	E1_tol	long	2	Total energy of present month
0x40c	E1 _T1	long	2	
0x40e	E1 _T2	long	2	T1-T4 Energy record of present month
0x410	E1 _T3	long	2	1 1-14 Energy record of present month
0x412	E1_T4	long	2	
0x414	E2_tol	long	2	Total energy of last month
0x416	E2_T1	long	2	
0x418	E2_T2	long	2	T4 T4 Energy record of last month
0x41a	E2_T3	long	2	T1-T4 Energy record of last month
0x41c	E2_T4	long	2	
0x41e	E3_tol	long	2	Total energy of the month before last month
0x420	E3_T1	long	2	
0x422	E3_T2	long	2	T1 T1 Energy record of the month before last month
0x424	E3_T3	long	2	T1-T4 Energy record of the month before last month
0x426	E3_T4	long	2	

Note: In screen display the T1-T4 will display as following in screen and setup:

Tine	ti nE	T1
Peak	PERY	T2
Flat	FLRE	T3
Valley	Fon	T4

8.3.6.- THD and Individual harmonic (Max 63 times) - read only

Register	Data	Byte	mode	Instruction	
0x500	THDUa	int	1	A-phase voltage THD	
0x501	THDUb	int	1	B-phase voltage THD	
0x502	THDUc	int	1	C-phase voltage THD	
0x503	THDia	int	1	A-phase current THD	
0x504	THDib	int	1	B-phase current THD	
0x505	THDic	int	1	C-phase current THD	
0x508-0x545	HUa	int	62		
0x548-0x585	HUb	int	62		
0x588-0x5c5	HUc	int	62	Three phase voltage individual harmonic 2-63 rd	
0x5c8-0x605	Hla	int	62	Three phase current individual harmonic 2-63rd	
0x608-0x645	HIb	int	62		
0x648-0x685	HIC	int	62		
0x688	TOHDUa	int	1		
0x689	TOHDUb	int	1	Three phase voltage total odd harmonic distortion, unit 0.1%	
0x68a	TOHDUc	int	1		
0x68b	TEHDUa	int	1		
0x68c	TEHDUb	int	1	Three phase voltage total even harmonic distortion, unit 0.1%	
0x68d	TEHDUc	int	1		
0x68e	THFFUa	int	1	Three phase voltage telephone harmonic form	
0x68f	THFFUb	int	1	factor,	
0x690	THFFUc	int	1	unit 0.1%	
0x691	CFUa	int	1		
0x692	CFUb	int	1	Three phase voltage crest factor, unit 0.001	
0x693	CFUc	int	1		
0x694	TOHDIa	int	1		
0x695	TOHDIb	int	1	A phase current total odd harmonic distortion, unit 0.1%	
0x696	TOHDIc	int	1		
0x697	TEHDIa	int	1		
0x698	TEHDIb	int	1	Three phase current total even harmonic distortion, unit 0.1%	
0x699	TEHDIC	int	1		
0x69a	KFIa	int	1		
0x69b	KFIb	int	1	Three phase current K factor, unit 0.01	
0x69c	KFIc	int	1		

8.3.7.- DI/DO settings- read and write

Register	Data	Byte	mode	Instruction
0x1120	DI 1 Alarm ON/OFF	int	1	After the corresponding DI channel is closed, whether to
0x1121	DI 2 Alarm ON/OFF	int	1	enter the alarm mode 0: No alarm 1: Alarm
0x1123	DI 1 Alarm action	int	1	After alarms, the output action:
0x1124	DI 2 Alarm action	int	1	0: No action; 1: DO1 action; 2: DO2 action
0x1130	DO 1 trip mode	int	1	0: Remote (by RS485 command)
0x1131	DO 2 trip mode	int	1	1: Auto trip 2: Tum off
0x1132	DO 1 trip delay time	int	1	Dango: 1 0000 unit 0 1s
0x1133	DO 2 trip delay time	int	1	Range: 1-9999, unit 0.1s
0x1134	DO 1 trip parameters	int	1	See the note table below
0x1135	DO 2 trip parameters	int	1	See the note table below
0x1136	DO 1 trip threshold value	int	1	Pange: 0.0000
0x1137	DO 2 trip threshold value	int	1	Range: 0-9999
0x1138	DO 1 trip hysteresis value	int	1	Range: 0-9999
0x1139	DO 2 trip hysteresis value	int	1	Range. 0-9999

8.3.8.- SOE record- read only

DI/DO SOE Record

Register	Data	Byte mode		Instruction	
0x700-0x795	DI/DO event 1~30	int	1	Byte 0: Fault type Byte 1: Fault event Byte 2,3: Fault value Byte 4: Fault time: Year Byte 5: Fault time: Month Byte 6: Fault Time: Day Byte 7: Fault time: Time Byte 8: Fault time: Minute Byte 9: Fault time: Seconds	

_

Alarm SOE

Register	Data	Byte mode		Instruction	
0x800-0x995	Alarm event 1~30	int	1	Byte 0: Fault type Byte 1: Fault channel Byte 2,3: Fault value Byte 4: Fault time: Year Byte 5: Fault time: Month Byte 6: Fault Time: Day Byte 7: Fault time: Time Byte 8: Fault time: Minute Byte 9: Fault time: Seconds	

Byte 0	Byte 1	
1: Alarm 2: Sensor short-circuit 3: Sensor disconnected 4: DO 1 action 5: DO 2 action	1: Leakage channel 1 2: Leakage channel 2 3: Leakage channel 3 4: Leakage channel 4 5: Temperature channel 1 6: Temperature channel 2 7: Temperature channel 3 8: Temperature channel 4 9: DI 1 10: DI 2	11: Reserved 12: Communication 13: Leakage channel 5 14: Leakage channel 6 15: Leakage channel 7 16: Leakage channel 8 17: Temperature channel 5 18: Temperature channel 6 19: Temperature channel 7 20: Temperature channel 8

8.3.9 - Write operation function definition: Preset Single holding registers

Register	Data	Byte i	mode	Instruction
0x20A	RTC.year	int	1	
0x20B	RTC month	int	1	
0x20C	RTC.date	int	1	latarasi BTO and times
0x20D	RTC.hour	int	1	Internal RTC real-time: year-month-date-hour-minute-second-day
0x20E	RTC.minute	int	1	year-month-date-nour-minute-second-day
0x20F	RTC.second	int	1	
0x210	RTC.day	int	1	

Notes:

- 1. Not all of the data above can be read by RS485, the reading address will be unsuccessful.
- 2. The data can be read out depending on your multi-function meter model, please refer to the corresponding product manual before build your software.
- Some software has different definitions of the start bit of register address, there will be offset, please add 1 for the right address. To get more info, please contact technical support tech@cqbluejay.com

8.4.- Example

Host inquiry slave device

Addr.	Func.	Data Address (high)	Data Address (low)	Data Number (high)	Data number (low)	CRC16 (low)	CRC16 (high)
0CH	03H	00H	00H	00H	06H	C4H	D5H

PC user ask upload UA, UB, UC, IA, IB, IC

Slave device answer

Addr.	Func.	Byte count	Data1 high	Data1 low	Data2 high	Data2 low	Data3 high	Data3 low
0CH	03H	0CH	03H	E8H	03H	E9H	03H	E8H
Data4 high	Data4 low	Data5 high	Data5 low	Data6 high	Data6 low	CRC16 low	CRC16 high	
13H	84H	13H	88H	13H	8AH	A6H	D6H	

Show the data:

UA=3E8H (100.0)

UB=3E9H (100.1)

UC=3E7H (99.9)

IA=1384H (4.996)

IB=1388H (5.000)

IC=138AH (5.002)

Notes:

- Blue Jay disable the 06 function in default setting, if Activated the write command, please check
 the host device program to avoid the meaningless write operation, that may reduce the reduce
 the register working life.
- When the write is unsuccessful, no return data from the slave device. In this addition, please re-send write inquiry again.

9.- SAFETY CONSIDERATIONS

All installation specification described at the previous chapters named: INSTALLATION AND STARTUP, INSTALLATION MODES and SPECIFICATIONS.

Please note that with the instrument powered on, the terminals could be dangerous to touching and cover opening actions or elements removal may allow accessing dangerous parts. This instrument is factory-shipped at proper operation condition.

- The device must have a professional installation and maintenance.
- Any operation of the device, you must cut off the input signal and power.

10.- MAINTENANCE

The DEM-6MC energy meter does not require any special maintenance. No adjustment, maintenance or repairing should be done when the instrument is open and powered on, should those actions are essential, high-qualified operators must perform them.

Before any adjustment, replacement, maintenance or repair operation is carried out, the instrument must be disconnected from any power supply source.

When any protection failure is suspected to exist, the instrument must be immediately put out of service. The instrument's design allows a quick replacement in case of any failure.

11.- TECHNICAL SERVICE

FAQ's

1.- Once cabled and connected is seen to give a correct voltage and current reading, but shows negative values for active power (generation).

This is an error with the cabling for the current transformer secondary; the direction of the transformer current has to be respected as shown in the connection diagram. The current transformers have a two face primary; the current must pass from P1 to P2 giving the result in secondary (S1 and S2) of 5 amps.

The error stems from:

- a). The current transformers have been incorrectly installed. As a result, it gives the direction of the current as passing from P2 to P1; to resolve this problem, the current transformer does not have to be dismantled and installed again, but the transformer secondary (S1 and S2) just has to be inverted.
- b). The connection of the current secondary in the current transformers have been incorrectly connected; to resolve this problem just connect the S1 transformer secondary to the S1 on the meter and the S2 on the current transformer to the S2 on the meter.
- 2.- Once cabled and connected, is seen to give an incoherent Power factor and CosΦ reading (-0.01 or similar).

This is again a current transformer and voltage phase connection error phase A, must correspond to the current transformer installed in phase A; phase B, must correspond to the current transformer installed in phase B; and phase C, must correspond to the current transformer installed in phase C.

This connection terminal is clearly shown on the area side of the device.

- 3.- The measuring voltage and is displaying the secondary voltage (for example 110 volts). Ensure that the voltage Transformer ratio has been correctly set (Please refer to voltage PT ratio setting section in chapter SETUP PROCEDUCE).
- 4.- Device does not correctly display the current reading. It shows values varying between 0 to 5 amps of current.
 - Ensure that the Current Transformer ratio has been correctly set; (Please refer to current CT ratio setting section in chapter **SETUP PROCEDUCE**).

Calculation formula of electrical parameter

$U = \sqrt{\frac{1}{N} \sum_{n=0}^{N} u_n^2} n = 0,1,2N$	Voltage RMS value
$I = \sqrt{\frac{1}{N} \sum_{n=0}^{N} i_n^2} n = 0, 1, 2,N$	Current RMS value
$P = \frac{1}{N} \sum_{n=1}^{N} (i_{an}u_{an} + i_{bn}u_{bn} + i_{cn}u_{cn})$	Total active power cycle average
$P_s = UI$	Single-phase apparent power cycle average
$\cos\theta = \frac{P_p}{P_S}$	Power factor
$P_{q} = \sqrt{P_{S}^{2} - P_{P}^{2}}$	Reactive power (Pq is positive and the direction cannot be determined; P algorithm can be used to shift the voltage component by 90°)
$W = \int P * dt$	Electric energy

Note: In above formula, N for sampling points in one AC wave, In standard DEM-6MC, the N=128

For any inquiry about the instrument performance or any failure, contact to Blue Jay's technical service.

Blue Jay - After-sales service

E-mail: tech@cqbluejay.com